Consider the given integral.
I=∫√x√a3−x3dx
Put t=x32a32
dt=1a32×32√xdx
√xdx=23a32dt
I=23∫1√1−t2dt
I=23sin−1t+C
On putting the value of t in above expression, we get
I=23sin−1(xa)32+C
Hence, this is the required value of the given integral.