Step 1: Finding Step-Deviation
Let, a= assumed mean =65
h= common factor =10
di = step deviation
For Marks (30−40),fi=3
xi=30+402=35
di=xi−ah=35−6510=−3
d2i=(−3)2=9
fidi=3×−3=−9
fid2i=3×9=27
MarksNumber of Mid - point(xi)di=xi−ahd2ifidifid2iobtainedstudents(fi)30−40330+402=3535−6510=−39−92740−50740+502=4545−6510=−24−142850−601250+602=5555−6510=−11−121260−701560+702=6565−6510=000070−80870+802=7575−6510=118880−90380+902=8585−6510=2461290−100290+1002=9595−6510=39618∑fi=50∑fidi=−15∑fid2i=105
Step 2: Finding mean
Mean (¯¯¯x)=a+∑fidi∑fi×h
Mean (¯¯¯x)=65−1550×10=62
Step 3: Finding variance and standard deviation
Variance (σ2)=h2(∑fi)2[(∑fi).(∑fid2i)−(∑fidi)2]
=(10)2(50)2[50×(105)−(−15)2]
=1002500[5250−225]
=125×5025
=201
Standard deviation (σ)=√201=14.18
Hence, the mean is 62, variance is 201 and the standard deviation is 14.18