Given,
AB = BC = CD = AD = 8 cm
We know that, area of Δ
= 12×(base)×(height)
Area of ΔABC=Area of ΔADC
=12×8×8=32 cm2
Area of quadrant AECB = Area of quadrant AFCD
=(πR2)4 cm2
=(227×82)4 cm2
=3527 cm2
∴ Area of shaded region
= (Area of quadrant AECB - Area of ΔABC) + (Area of quadrant AFCD - Area of ΔADC)
=(3527−32)+(3527−32) cm2
=2×(3527−32) cm2
=2567 cm2