Calculate the coefficient of variation of the given continuous series.
more than010203040506070Cumulative Frequency100907550201050
Since, cumulative frequencies are give, we first convert them into simple frequnecies
Class Intervalfrequencymd = m-Ad′=dcfd′(d′)2f(d′)2A=35c=100−10105−30−3−3099010−201515−20−2−3046020−302525−10−1−2512530−4030340000040−5010451011011050−605552021042060−705653031594570−800754040160N=100∑fd′=−50∑f(d′)2=250
Thus, mean ¯¯¯x=A+∑fd′N×h
=35+(−50)100×10
∴¯¯¯x=35−5=30
variance σ2=h2N2[N∑f(d′)2−(∑fd′)2]
=102(100)2[100(250)−(−50)2]
=(110)2[25000−250]
=(0.1)2[24750]
=0.01[247.50]
∴σ=√247.5=15.73
Hence, coefficient of variance=σ¯¯¯x×100
=15.7330×100
=157330
=52.44