Calculate the gravitational field intensity and potential at the centre of the base of a solid hemisphere of mass m, radius R.
Open in App
Solution
We consider the shaded elemental disc of radius Rsinθ and thickness Rdθ It mass, dM=M23πR3π(Rsinθ)2(Rdθsinθ) or dM=3M2sin3θdθ Field due to this plate at O, dE=2GdM(1−cosθ)(Rsinθ)2 (see field due to a uniform disc) or dE=3GMsinθ(1−cosθ)dθR2 Therefore, E=∫π20dE=∫π203GMsinθ(1−cosθ)R2dθ =3GMR2[−cosθ+cos2θ2]π20 or E=3GM2R2 Now potential due to the element under consideration at the centre of the base of the hemisphere, dV=−2GdM/r(cosecθ−cotθ) (see potential due to a circular plate) or dV=3GMsin3θ(cosecθ−cotθ)dθ(Rsinθ) Therefore, V=−3GMR∫π20(sinθ−cosθsinθ)dθ =−3GMR[−cosθ+cos2θ2]π20 or V=−3GM2R.