Step 1: Finding mean
30−40330+402=3535×3=10540−50740+502=4545×7=31550−601250+602=5555×12=66060−701560+702=6565×15=97570−80870+802=7575×8=60080−90380+902=8585×3=25590−100290+1002=9595×2=190∑fi=50∑fixi=3100
Mean ¯¯¯x=∑xifi∑fi
⇒¯¯¯x=310050
⇒¯¯¯x=62
Step 2: Finding variance and standard deviation
FrequencyMid - point(xi−¯¯¯x)2fi(xi−¯¯¯x)2335(35−62)2=(27)2=7293×729=2187745(45−62)2=(17)2=2897×289=20231255(55−62)2=(7)2=4912×49=5881565(65−62)2=32=915×9=135875(75−62)2=(13)2=1698×169=1352385(85−62)2=(23)2=5293×529=1587295(95−62)2=(33)2=10892×1089=2178∑fi=50∑fi(xi−¯¯¯x)2=10050
Variance (σ2)=1N∑fi(xi−¯¯¯x)2
=150×10050 [∵N=∑fi=50]
=201
Standard deviation (σ)=√201=14.17
hence, the mean is 62, variance is 201 and the standard deviation is 14.17