Calculate the quartile deviation for the following:
C.I.
0−9
10−19
20−29
30−39
40−49
50−59
60−69
f
8
16
17
34
10
5
10
Open in App
Solution
We observe that the class intervals are in inclusive form. We have to convert them into exclusive form by adding the correction factor. You have learnt to add the correction factor in 8th standard.
Class interval
f
fc
−0.5−9.5
8
8
9.5−19.5
16
24
19.5−29.5
17
41
Q1Class
29.5−39.5
34
75
Q3Class
39.5−49.5
10
85
49.5−59.5
5
90
59.5−69.5
10
100
To find Q1: Here N=100. Hence N/4=25 and 25 in fc column corresponds to CI19.5−29.65. Hence LRL=19.5,fc=24,fm=17 and i=10. Thus we have Q1=LRL+⎛⎜
⎜
⎜⎝N4−fcfm⎞⎟
⎟
⎟⎠×i=19.5+(25−2417)×10 =19.5+(0.058×10)=19.5+0.58=20.08. To find Q3: We have 3N/4=(3×100)/4=75 and 75 corresponds to CI29.5−39.5 in fc column. Thus LRL=29.5,fc=41,fm=34 and i=10. Therefore Q3=LRL+⎛⎜
⎜
⎜⎝3N4−fcfm⎞⎟
⎟
⎟⎠×i=29.5+(75−4134)×10 =29.5+(1×10)=29.5+10=39.5. We now compute quartile deviation: quartile deviation =Q3−Q12=39.5−20.082=19.422=9.71.