The correct option is
A 6.43×10−4m3/sFrom continuity equation,A1V1=A2V2
⇒A2A1=V1V2=πr21πr22=(0.040.1)2=425 ....(1)
From Bernoulli's equation,
p1+12ρV21=p2+12ρV22
V22−V21=2(p1−p2)ρ=2×101.25×103=1.6×10−2m2s−2 .......(2)
Solving eqns(1) and (2) we get
V1V2=425⇒V1=425V2
And V22−V21=1.6×10−2m2s−2
⇒V22−(425V2)2=1.6×10−2m2s−2
⇒(1−16625)V22=1.6×10−2m2s−2
⇒(625−16625)V22=1.6×10−2m2s−2
⇒V2=√1.6×10−2×625609=0.128m/s
Rate of volume flow through the tube is Q=A2V2=πr22V2
=227×(0.04)2×0.128=6.43×10−4m3s−1