wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Calculate the value of the following determinant:

∣ ∣ ∣ ∣1+a11111+b11111+c11111+d∣ ∣ ∣ ∣.

Open in App
Solution

GivenΔ=∣ ∣ ∣ ∣1+a11111+b11111+c11111+d∣ ∣ ∣ ∣

R1=R1R2

Δ=∣ ∣ ∣ ∣ab0011+b11111+c11111+d∣ ∣ ∣ ∣

Expanding along R1

Δ=a∣ ∣1+b1111+c1111+d∣ ∣(b)∣ ∣11111+c1111+d∣ ∣+00

Δ=a∣ ∣1+b1111+c1111+d∣ ∣+b∣ ∣11111+c1111+d∣ ∣

let Δ1=∣ ∣1+b1111+c1111+d∣ ∣

R1=R1R2Δ1=∣ ∣bc011+c1111+d∣ ∣

Δ1=b{(1+c)(1+d)1}(c){1+d1}+0

Δ1=b(1+d+c+cd1+cd}

Δ1=bd+bc+2bcd

Let Δ2=∣ ∣11111+c1111+d∣ ∣

R1=R1R2

Δ2=∣ ∣0c011+c1111+d∣ ∣

Δ2=0(c){1+d1}+0

Δ2=cd

Now Δ=aΔ1+bΔ2

Δ=a(bd+bc+2bcd)+b(cd)

Δ=2abcd+abd+abc+bcd

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon