Calculate the value tan90-tan270-tan630+tan810
tan9∘-tan27∘-tan63∘+tan81∘
=tan9∘+tan81∘-tan27∘-tan63∘
=tan9∘+tan90∘-9∘-tan27∘-tan90∘-27∘
=tan9∘+cot9∘-tan27∘+cot27∘-----1
We can express it as
tan9∘+cot9∘=1sin9∘cos9∘∵tanθ=sinθcosθandcotθ=cosθsinθ=2sin18∘-----2∵sin2θ=2sinθcosθtan27∘+cot27∘=1sin27∘cos27∘∵tanθ=sinθcosθandcotθ=cosθsinθ=2sin54∘∵sin2θ=2sinθcosθ=2cos36∘------3∵sin90°-θ=cosθ
Substitute 2 and 3 in 1, we get
tan9∘+cot9∘-tan27∘+cot27∘=2sin18∘-2cos36∘=4∵sin18∘=5-14andcos36∘=5+14
Therefore, the value of tan9∘-tan27∘-tan63∘+tan81∘=4.
calculate the value f tan15