wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Calculate the values of the determinants:
∣ ∣ ∣ ∣0xyzx0zyyz0xzyx0∣ ∣ ∣ ∣.

Open in App
Solution

Δ=∣ ∣ ∣ ∣0xyzx0yzyz0xzyx0∣ ∣ ∣ ∣R1=R1+R2+R3+R4Δ=∣ ∣ ∣ ∣x+y+zx+y+zx+y+zx+y+zx0yzyz0xzyx0∣ ∣ ∣ ∣Δ=(x+y+z)∣ ∣ ∣ ∣1111x0yzyz0xzyx0∣ ∣ ∣ ∣R2=R2xR1,R3=R3yR1,R4=R4zR1,Δ=(x+y+z)∣ ∣ ∣ ∣11110xyxzx0zyyxy0yzxzz∣ ∣ ∣ ∣
Expanding along C1
Δ=(x+y+z)∣ ∣xyxzxzyyxyyzxzz∣ ∣R2=R2R3Δ=(x+y+z)∣ ∣xyxzx0y+xzxyzyzxzz∣ ∣Δ=(x+y+z)(xyz)∣ ∣xyxzx011yzxzz∣ ∣Δ=(x+y+z)(xyz)∣ ∣011xyxzxyzxzz∣ ∣Δ=(x+y+z)(y+zx)∣ ∣011xyxzxyzxzz∣ ∣R3=R3+zR1Δ=(x+y+z)(y+zx)∣ ∣011xyxzxyzx0∣ ∣R2=R2+xR1Δ=(x+y+z)(y+zx)∣ ∣011xyzyzx0∣ ∣
Expanding along R1
Δ=(x+y+z)(y+zx){01{0z(yz)}+1(x2y(yz)}Δ=(x+y+z)(y+zx)(2yzx2y2z2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon