Given number 1, 3, 5, ..., 101 form an AP with a = 1 and d = 2.
Let Tn = 101. Then,
1 + (n − 1)2 = 101
⇒ 1 + 2n − 2 = 101
⇒ 2n = 102
⇒ n = 51
Thus, total number of outcomes = 51.
(i) Let E1 be the event of getting a number less than 19.
Out of these numbers, numbers less than 19 are 1, 3, 5, ... , 17.
Given number 1, 3, 5, .... , 17 form an AP with a = 1 and d = 2.
Let Tn = 17. Then,
1 + (n − 1)2 = 17
⇒ 1 + 2n − 2 = 17
⇒ 2n = 18
⇒ n = 9
Thus, number of favourable outcomes = 9.
∴ P(getting a number less than 19) = P(E1) =
=
Thus, the probability that the number on the drawn card is less than 19 is .
(ii) Let E2 be the event of getting a prime number less than 20.
Out of these numbers, prime numbers less than 20 are 3, 5, 7, 11, 13, 17 and 19.
Thus, number of favourable outcomes = 7.
∴ P(getting a prime number less than 20) = P(E2) =
=
Thus, the probability that the number on the drawn card is a prime number less than 20 is .