The correct option is A 4(x2+y2)(x2+y2−ax)=a2y2
Given, √r=√acosθ2
⇒2r=a(2cos2θ2) ....(Squaring both sides)
⇒2r2=ra(1+cosθ) ....(Multiplying both sides by r)
⇒2r2=a(r+rcosθ)
⇒{2r2=a(r+rcosθ)}2=a2r2
⇒(2r2−ax)2=a2r2
⇒4(r2)2−4r2ax+a2x2=a2(r2)
⇒4[(x2+y2)2]−4ax(x2+y2)+a2x2=a2(x2+y2)
⇒4(x2+y2)[x2+y2−ax]=a2y2
Hence, option B is the correct answer.