wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

CD and GH are respectively the bisectors of ∠ACB and ∠EGF such that D and H lie on sides AB and FE of ΔABC and ΔEFG respectively. If ΔABC ∼ ΔFEG, Show that:

(i)

(ii) ΔDCB ∼ ΔHGE

(iii) ΔDCA ∼ ΔHGF

Open in App
Solution

It is given that ΔABC ∼ ΔFEG.

∴ ∠A = ∠F, ∠B = ∠E, and ∠ACB = ∠FGE

∠ACB = ∠FGE

∴ ∠ACD = ∠FGH (Angle bisector)

And, ∠DCB = ∠HGE (Angle bisector)

In ΔACD and ΔFGH,

∠A = ∠F (Proved above)

∠ACD = ∠FGH (Proved above)

∴ ΔACD ∼ ΔFGH (By AA similarity criterion)

In ΔDCB and ΔHGE,

∠DCB = ∠HGE (Proved above)

∠B = ∠E (Proved above)

∴ ΔDCB ∼ ΔHGE (By AA similarity criterion)

In ΔDCA and ΔHGF,

∠ACD = ∠FGH (Proved above)

∠A = ∠F (Proved above)

∴ ΔDCA ∼ ΔHGF (By AA similarity criterion)


flag
Suggest Corrections
thumbs-up
296
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Criteria for Similarity of Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon