Solution:- (A) (92,72)
Let (x−h)2+(y−k)2=r2 where (h,k) be the centre of circle and r be the radius of circle.
Given that the circle passes through the points (4,5),(3,4) and (5,2), i.e., all the given points will satisfy the equation of circle.
Therefore,
(4−h)2+(5−k)2=r2
16+h2−8h+25+k2−10k=r2
h2+k2−8h−10k+41=r2.....(1)
(3−h)2+(4−k)2=r2
9+h2−6h+16+k2−8k=r2
h2+k2−6h−8k+25=r2.....(2)
(5−h)2+(2−k)2=r2
25+h2−10h+k2+4−4k=r2
h2+k2−10h−4k+29=r2.....(3)
From eqn(1)&(2), we have
h2+k2−8h−10k+41=h2+k2−6h−8k+25
2h+2k−16=0
⇒h+k−8=0.....(4)
Again from eqn(2)&(3), we have
h2+k2−6h−8k+25=h2+k2−10h−4k+29
4h−4k−4=0
h−k−1=0.....(5)
Adding eqn(4)&(5), we have
(h+k−8)+(h−k−1)=0
⇒2h−9=0⇒h=92
Substituting the value of h in eqn(5), we have
92−k−1=0⇒k=72
Substituting the value of h and k in eqn(2), we have
r2=(92)2+(72)−6(92)−8(72)+25
⇒r2=814+494−27−28+25
⇒r2=1304−30
⇒r2=104
⇒r=√52
Hence the equation of circle will be-
(x−92)2+(y−72)2=(√52)2