The correct option is D tanθ2
Let c=cosθ,s=sinθ
∴E=2+3s+5cs−7s2+5c2s+3+5c2+7cs+8c=s(5c+3)−(7c+2)(c−1)s(7c+2)+(c+1)(5c+3)
s2=1−c2=(1+c)(1−c)
∴s1−c=1+cs=λ
∴E=(1−c)λ(5c+3)+(1−c)(7c+2)s(7c+2)+λs(5c+3)=1−cs.(7c+2)+λ(5c+3)7c+2)+λ(5c+3)=1−cs=2sin2θ22sinθ2cosθ2=tanθ2