The correct option is C 3n.n!1.4.7...(3n+1)
(1−x3)n=C0−C1x3+C2x6−C3x9+⋯+(−1)nCnx3n
Integrating both sides with in limits 0 to 1,
∫10(1−x3)ndx=C01−C14+C27−...+(−1)nCn3n+1
let In=∫10(1−x3)ndx integrating by parts
In=[x(1−x3)n]10−∫10x.n(1−x3)n−1(−3x2)dx
=0−3n∫10(1−x3)n−1(1−x3−1)dx
⇒In=−3nIn+3nIn−1
→In(3n+1)=3nIn−1
∴In=3n3n+1In−1=3n3n+1⋅3n−33n−2⋅⋅⋅67⋅34I0
where I0=∫10(1−x3)0dx=∫101dx=1
⇒In=3n.n!1.4.7...(3n+1)
∴C01−C14+C27−...+(−1)nCn3n+1=3n.n!1.4.7...(3n+1)
Hence, option D.