wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

cosAsinA+1cosA+sinA1=cscA+cotA, using the identity csc2A=1+cot2A

Open in App
Solution

LHS
=cosAsinA+1cosA+sinA1
=cotA(1cscA)cotA+(1cscA)
=cotA(1cscA)cotA+(1cscA)×cotA(1cscA)cotA(1cscA)
=[cotA(1cscA)]2cot2A(1cscA)2
=cot2A+(1cscA)22cotA(1cscA)cot2A(1+csc2A2cscA)
=cot2A+1+csc2A2cscA2cotA+2cotAcscAcot2A1csc2A+2cscA
=csc2A+csc2A2cscA2cotA+2cotAcscA11+2cscA
=2csc2A2cscA2cotA+2cotAcscA2cscA2
=2cscA(cscA1)+2cotA(cscA1)2(cscA1)
=2(cscA1)(cscA+cotA)2(cscA1)
=cscA+cotA
=RHS
Hence, proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon