1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Monotonically Increasing Functions
d dx -1 √ 1+...
Question
d
d
x
{
cot
−
1
√
1
+
x
−
√
1
−
x
√
1
+
x
+
√
1
−
x
}
=
A
1
√
1
−
x
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−
1
2
√
1
−
x
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1
√
1
+
x
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−
1
2
√
1
+
x
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
−
1
2
√
1
−
x
2
Given,
d
d
x
(
cot
−
1
(
√
1
+
x
−
√
1
−
x
√
1
+
x
+
√
1
−
x
)
)
f
=
cot
−
1
(
u
)
,
u
=
√
1
+
x
−
√
1
−
x
√
1
+
x
+
√
1
−
x
=
d
d
u
(
cot
−
1
(
u
)
)
d
d
x
(
√
1
+
x
−
√
1
−
x
√
1
+
x
+
√
1
−
x
)
=
(
−
1
u
2
+
1
)
2
(
√
1
+
x
+
√
1
−
x
)
2
√
x
+
1
√
−
x
+
1
=
⎛
⎜ ⎜ ⎜
⎝
−
1
(
√
1
+
x
−
√
1
−
x
√
1
+
x
+
√
1
−
x
)
2
+
1
⎞
⎟ ⎟ ⎟
⎠
2
(
√
1
+
x
+
√
1
−
x
)
2
√
x
+
1
√
−
x
+
1
=
−
1
2
√
x
+
1
√
−
x
+
1
Suggest Corrections
0
Similar questions
Q.
∫
sin
(
tan
−
1
√
x
)
d
x
(
x
≥
0
)
is
Q.
If
y
=
s
i
n
−
1
(
x
√
1
−
x
+
√
x
√
1
−
x
2
)
then
d
y
d
x
=
Q.
solve
∫
[
1
+
1
(
1
+
x
2
)
−
2
√
1
−
x
2
+
5
x
√
x
2
−
1
+
a
x
]
d
x
Q.
∫
d
x
(
x
+
1
)
√
x
2
−
1
=
Q.
∫
√
x
+
1
x
d
x
is equal to