wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Choose the correct alternative:

(a) Acceleration due to gravity increases/decreases with increasing altitude.

(b) Acceleration due to gravity increases/decreases with increasing depth. (assume the earth to be a sphere of uniform density).

(c) Acceleration due to gravity is independent of mass of the earth/mass of the body.

(d) The formula –G Mm(1/r2– 1/r1) is more/less accurate than the formula mg(r2r1) for the difference of potential energy between two points r2and r1distance away from the centre of the earth.

Open in App
Solution

Answer:

(a) Decreases

(b) Decreases

(c) Mass of the body

(d) More

Explanation:

(a) Acceleration due to gravity at depth h is given by the relation:

Where,

= Radius of the Earth

g = Acceleration due to gravity on the surface of the Earth

It is clear from the given relation that acceleration due to gravity decreases with an increase in height.

(b) Acceleration due to gravity at depth d is given by the relation:

It is clear from the given relation that acceleration due to gravity decreases with an increase in depth.

(c) Acceleration due to gravity of body of mass m is given by the relation:

Where,

G = Universal gravitational constant

M = Mass of the Earth

R = Radius of the Earth

Hence, it can be inferred that acceleration due to gravity is independent of the mass of the body.

(d) Gravitational potential energy of two points r2 and r1 distance away from the centre of the Earth is respectively given by:

Hence, this formula is more accurate than the formula mg(r2r1).


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Motion Under Gravity
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon