The correct option is D 7
$sin^2 \theta + cos^2 \theta + tan^2 \theta + cot^2 \theta + sec^2 \theta + cosec^2 \theta$
= 1+tan2θ+cot2θ+sec2θ+cosec2θ
Minimum value of a tan2θ+bcot2θ=2√ab
=1 + 2√1×1+sec2θ+cosec2θ=1+2+sec2θ+cosec2θ
Now, minimum value of a sec2θ+bcosec2θ=(√a+√b)2
= 1 + 2 + (√1+√1)2=1+2+(2)2 = 1 + 2 + 4 = 7
Hence, the minimum value of expression is 7.