The determinant is given as,
Δ=| x+2 x+3 x+2a x+3 x+4 x+2b x+4 x+5 x+2c |
It is given that a, b and c are in A.P.
It can be calculated as,
b−a=c−b 2b−a−c=0
We have to multiply and divide by 2 in the given determinant.
Δ= 1 2 | x+2 x+3 x+2a 2( x+3 ) 2( x+4 ) 2( x+2b ) x+4 x+5 x+2c | Δ= 1 2 | x+2 x+3 x+2a 2x+6 2x+8 2x+4b x+4 x+5 x+2c |
Apply the row transformation R 2 → R 2 − R 1 − R 3 in the above determinant,
Δ= 1 2 | x+2 x+3 x+2a 2x+6−( x+2 )−( x+4 ) 2x+8−( x+3 )−( x+5 ) 2x+4b−( x+2a )−( x+2c ) x+4 x+5 x+2c | = 1 2 | x+2 x+3 x+2a 0 0 4b−2a−2c x+4 x+5 x+2c | = 1 2 | x+2 x+3 x+2a 0 0 2( 2b−a−c ) x+4 x+5 x+2c |
By substituting the value of 2b−a−c=0 in the above determinant we get,
Δ= 1 2 | x+2 x+3 x+2a 0 0 0 x+4 x+5 x+2c |
By using the property that if any row or column in a determinant is zero then the value of determinant is zero.
Δ=0
Thus, the correct option is (A).