Choose the correct answer.
If f(x)=∫0x t sin t dt, then f'(x)is
(a)cos x+x sin x
(b)x sin x
(c)x cos x
(d)sin x +x cos x
Given, f(x)=∫x0tsintdt
On integrating by parts, we get
f(x)=t∫x0sintdt−∫x0[(ddtt)∫sintdt]dt=[t(−cost)]x0−∫x0(−cost)dt=[−tcost+sint]x0⇒f(x)=−xcosx+sinx
Now, differentiate w.r.t x,we get
f'(x)=-[{x(-sin x)}+cos x]+cos x=x sin x-cos x +cos x =x sin x
Using the product rule ddx(u.v)=udvdx+vdudx
Hence, option (b) is the correct answer.