Choose the correct answer in the following question:
If A=[αβγ−α]
is such that A2=I. then
(a)1+α2+βγ=0(b)1−α2+βγ=0(c)1−α2−βγ=0(d)1+α2−βγ=0
Given, A2=I
∴AA=I⇒[αβγ−α][αβγ−α]=[1001]⇒[α2+βγαβ−αβαγ−γαγβ+α2]=[1001]
On comparing the corresponding elements, we have
α2+βγ=1⇒α2+βγ−1=0⇒1−α2−βγ=1
∴ Hence, (c)is the correct option.