Choose the correct answer in the given question.
∫exsecx(1+tanx)dx equals
(a)excosx+C(b)exsecx+C(c)exsinx+C(d)extanx+C
Let I=∫exsecx(1+tanx)dx
⇒I=∫exsecxdx+∫ex secx tanxdx..(i)
Now, ∫exsecxdx=secx∫exdx−∫[ddxsecx∫exdx]dx
=exsecx−∫secx tanx exdx......(ii)
On putting the value from Eq. (ii) in Eq. (i), we get
I=ex sec x −∫ex sec x tan x dx +∫ sec x tan x exdx+C
⇒I=ex sec x+C. Hence, correct option is (a).