Choose the correct answer in the given question.
∫√1+x2dx is equal to
(a)x2√1+x2+12log∣∣x+√1+x2∣∣+C(b)23(1+x2)32+C(c)23x(1+x2)32+C(d)x22√1+x2+12x2log|x+√1+x2|
Let I=∫√1+x2dx
⇒I=x2√1+x2+12log|x+√1+x2|+C[∵∫√x2+a2dx=x2√x2+a2+a22log|x+√x2+a2|]
Hence, the correct option is (a).