Choose the correct answer.
∫23014+9x2dx
(a)π6(b)π12(c)π24(d)π4
∫23014+9x2dx=19∫230149+x2dx=19∫2301(23)2+x2=19.123[tan−1(x23)]230[∵∫dxa+x2=1atan−1xa]=16[tan−1(3x2)]230=16[tan−1(32.23)−tan−10]=16(tan−11−0)=16.π4=π24.
Hence, option (c) is the correct.