Choose the correct answer. ∫√3111+x2dx is equal to (a)π3(b)2π3(c)π6(d)π12
∫√3111+x2dx=∫√311x2+12dx=[11tan−1(x1)]√31=tan−1√3−tan−11(∵∫dx1+x2=tan−1x)=π3−π4⇒4π−3π12=π12. Hence, the option (d)is correct.
Choose the correct answer. ∫23014+9x2dx (a)π6(b)π12(c)π24(d)π4
Choose the correct answer. The value of ∫π2−π2(x3+xcosx+tan5x+1)dx is (a) zero (b) 2 (c) π (d) 1