Choose the correct answer.
∫19x−4x2dx equals to
(a)19sin−1(9x−88)+C(b)12sin−1(8x−99)+C(c)13sin−1(9x−88)+C(d)12sin−1(9x−89)+C
∫1√9x−4x2dx=1√4∫1√94x−x212∫1√−[x2−94x+(98)2]+(98)2dx=12∫1√(98)2−(x−98)2dx=12sin−1(x−9898)+C[∵∫dx√a2−x2=sin−1(xa)]=12sin−1(8x−99)+C
Hence, the option (b)is correct.