Choose the correct. answer.
∫(10x9+10xloge10x10+10x)dx equals
(a)10x+x10+C(b)10x+x10+C(c)(10x−x10)−1+C(d)log|10x+x10|+C
∫(10x9+10xloge10x10+10x)dx
Let x10+10x=t⇒(10x9+10xloge10)dx=dt
⇒dx=dt10x9+10xloge10∴∫(10x9+10xloge10)x10+10x)dx=∫10x9+10xloge10t×dt10x9+10xloge10=∫dtt=log|t|+C=log|10x+x10|+C
So, (d) is the correct option.