Choose the correct answer
The area of the circle x2+y2=16 exterior to the parabola y2=6x is
(a) 43(4π−√3) (b) 43(4π+√3)
(c) 43(8π−√3) (d) 43(8π+√3)
The circle x2+y2=16 and the parabola y2=6x meet where
x2+6x=16 (Eliminating y)
⇒x2+6x−16=0
⇒(x+8)(x−2)=0⇒x=−8,2
∴ Required area = Area of the circle -2 Area shown in the shaded region..
=π(4)2−2[∫20√6x+∫42√16−x2dx]=16π−2√6[x3232]20−2[x2√16−x2+162sin−1x4]42=16π−4√63(232−0)−2[0+8 sin−1−√16−4−8 sin−112]=16π−4√6×2√23−2[8×π2−√12−8×π6]=16π−16√33−16π3+4√3=32π3−4√33=43(8π−√3)sq unit
So, the correct option is (c)