Choose the correct answer.
The value of ∫π20log(4+3sinx4+3cosx)dx is
(a) 2 (b) 34 (c) zero (d) -2
Let I=∫π20log(4+3sinx4+3cosx)dx⇒I=∫π20log(4+3sin(π2−x)4+3cos(π2−x))dx[∵∫a0f(x)dx=∫a0f(a−x)dx]⇒I=∫π20log(4+3 cos x4+3 sin x)dx[∵sin(π2−x)=cos x and cos(π2−x)=sin x]
On adding Eqs. (i) and (ii) we get
2I=∫π20[log(4+3 sin x4+3 cos x)+log(4+3 cos x4+3 sin x)]dx⇒2I=∫π20log(4+3 sin x4+3 cos x×4+3 cos x4+3 sin x)dx[∵log m+log n=log mn]⇒2I=∫π20 log 1 dx⇒2I=∫π200dx
I=0
Hence the correct option is (c)