wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Choose the correct answer.
The value of π20log(4+3sinx4+3cosx)dx is
(a) 2 (b) 34 (c) zero (d) -2

Open in App
Solution

Let I=π20log(4+3sinx4+3cosx)dxI=π20log(4+3sin(π2x)4+3cos(π2x))dx[a0f(x)dx=a0f(ax)dx]I=π20log(4+3 cos x4+3 sin x)dx[sin(π2x)=cos x and cos(π2x)=sin x]
On adding Eqs. (i) and (ii) we get
2I=π20[log(4+3 sin x4+3 cos x)+log(4+3 cos x4+3 sin x)]dx2I=π20log(4+3 sin x4+3 cos x×4+3 cos x4+3 sin x)dx[log m+log n=log mn]2I=π20 log 1 dx2I=π200dx
I=0
Hence the correct option is (c)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon