Choose the correct option. Justify your choice.
(i) 9sec2A−9tan2A=
(A) 1
(B) 9
(C) 8
(D) 0
(ii) (1+tanθ+secθ)(1+cotθ−cosecθ)
(A) 0
(B) 1
(C) 2
(D) −1
(iii) (secA+tanA)(1−sinA)=
(A) secA
(B) sinA
(C) cosecA
(D) cosA
(iv) 1+tan2A1+cot2A=
(A) sec2A
(B) −1
(C) cot2A
(D) tan2A
(i) Given 9sec2A−9tan2A
=9(sec2A−tan2A)
=9(1) [Since, sec2A−tan2A=1]
=9
Hence, alternative (B) is correct.
(ii) Given (1+tanθ+secθ)(1+cotθ−cosecθ)
Since tanθ=sinθcosθ,cotθ=cosθsinθ,secθ=1cosθ and cosecθ=1sinθ
So, given expression can be written as
(1+tanθ+secθ)(1+cotθ−cosecθ)=(1+sinθcosθ+1cosθ)+(1+cosθsinθ−1sinθ)
=(cosθ+sinθ+1cosθ)+(sinθ+cosθ−1sinθ)
=(cosθ+sinθ)2−(1)2sinθcosθ
=sin2θ+cos2θ+2cosθsinθ−1sinθcosθ
=1+2cosθsinθ−1sinθcosθ [Since, sin2θ+cos2θ=1]
=2cosθsinθcosθsinθ
=2
Hence, alternative (C) is correct.
(iii) Given (secA+tanA)(1−sinA)=(1cosA+sinAcosA)(1−sinA)
=1+sinAcosA(1−sinA)
=1−sin2AcosA
=cos2AcosA
=cosA
Hence, alternative (D) is correct.
(iv) Given 1+tan2A1+cot2A=1+(sinAcosA)21+(cosAsinA)2=
=cos2A+sin2Acos2Asin2A+cos2Asin2A
=1cos2A1sin2A
=sin2Acos2A
=tan2A
Hence, alternative (D) is correct.