wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Choose the correct option. Justify your choice.

(i) 9sec2A9tan2A=

(A) 1

(B) 9

(C) 8

(D) 0

(ii) (1+tanθ+secθ)(1+cotθcosecθ)

(A) 0

(B) 1

(C) 2

(D) 1

(iii) (secA+tanA)(1sinA)=

(A) secA

(B) sinA

(C) cosecA

(D) cosA

(iv) 1+tan2A1+cot2A=

(A) sec2A

(B) 1

(C) cot2A

(D) tan2A

Open in App
Solution

(i) Given 9sec2A9tan2A

=9(sec2Atan2A)
=9(1) [Since, sec2Atan2A=1]
=9
Hence, alternative (B) is correct.

(ii) Given (1+tanθ+secθ)(1+cotθcosecθ)
Since tanθ=sinθcosθ,cotθ=cosθsinθ,secθ=1cosθ and cosecθ=1sinθ

So, given expression can be written as
(1+tanθ+secθ)(1+cotθcosecθ)=(1+sinθcosθ+1cosθ)+(1+cosθsinθ1sinθ)
=(cosθ+sinθ+1cosθ)+(sinθ+cosθ1sinθ)
=(cosθ+sinθ)2(1)2sinθcosθ
=sin2θ+cos2θ+2cosθsinθ1sinθcosθ
=1+2cosθsinθ1sinθcosθ [Since, sin2θ+cos2θ=1]
=2cosθsinθcosθsinθ
=2
Hence, alternative (C) is correct.

(iii) Given (secA+tanA)(1sinA)=(1cosA+sinAcosA)(1sinA)
=1+sinAcosA(1sinA)
=1sin2AcosA
=cos2AcosA
=cosA
Hence, alternative (D) is correct.

(iv) Given 1+tan2A1+cot2A=1+(sinAcosA)21+(cosAsinA)2=
=cos2A+sin2Acos2Asin2A+cos2Asin2A
=1cos2A1sin2A
=sin2Acos2A
=tan2A
Hence, alternative (D) is correct.



flag
Suggest Corrections
thumbs-up
24
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Questions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon