Choose the correct option of general solutions -
Trigonometric EquationsGeneral Solutions1. sin2θ=sin2xA.2nπ±α2. cos2θ=cos2xB.nπ+(−1)nα3. tan2θ=tan2xC.nπ±α
1 - C, 2 - C, 3 - C
1 . sin2θ = sin2α
sin2θ - sin2α = 0
= sin (θ+α) × sin (θ-α) = 0
So, sin (θ+α) = 0 or sin (θ-α) = 0
θ + α = nπ or θ - α = nπ
θ = nπ - α or θ = nπ + α
Combining both the equations,
We get, θ = nπ ± α
2. cos2θ = cos2α
cos2θ - cos2α = 0
- sin (θ+α) sin (θ-α) = 0
sin (θ+α) =0 or sin (θ-α) = 0
θ + α = nπ or θ - α = nπ
θ = nπ - α or θ = nπ + α
Combining both the equations,
We get, θ = nπ ± α
3. tan2θ = tan2α
sin2θcos2θ - sin2αcos2α = 0
sin2θ.cos2α−cos2θ.sin2αcos2θ.cos2α = 0
(sinθ.cosα)2−(cosθ.sinα)2cos2θ.cos2α = 0
(sinθ.cosα+cosθ.sinα)(sinθ.cosα−cosθ.sinα)cos2θ.cos2α = 0
sin(θ +α) sin(θ -α) = 0 { where θ&α should not be equal to (2n+1)π2 n ∈ Z}
sin (θ+α) =0 or sin (θ-α) = 0
θ + α = nπ or θ - α = nπ
θ = nπ - α or θ = nπ + α
Combining both the equations,
We get, θ = nπ ± α
Where n ∈ Z, α & θ should not be equal odd multiples of π /2
α & θ ≠ (2n+1) π /2 ∈ Z