The correct option is D x2+11x+28=0
Let α and β be the two roots of the required quadratic equation ax2+bx+c=0 , where α>β.
We know αβ=ca
Also, (α−β)=√D|a|
Where D=b2−4ac
Now checking with each options:
1. x2−28x+11=0
Here a=1,b=−28,c=11
So difference of roots will be
α−β=√7401
α−β≠3
So this option is not correct .
Similarly for option 2
x2−11x+28=0
Here a=1,b=−11,c=28
So difference of roots will be
α−β=√91
α−β=3
Also, αβ=ca
αβ=28
So this option is correct.
Similarly for option 3.
x2+11x+28=0
Here a=1,b=11,c=28
So difference of roots will be
α−β=√91
α−β=3
Also, αβ=ca
αβ=28
So this option is correct.
Similarly for option 4
3x2+11x+10=0
Here a=3,b=11,c=10
So difference of roots will be
α−β=√13
α−β=13
α−β≠3
So this option is not correct.