The correct option is D 3x2+15x+30=0
Let α and β be the two roots of the required quadratic equation ax2+bx+c=0,a≠0
Given: α+β=−5,αβ=10
We know α+β=−ba
⇒−ba=−5
⇒b=5a
Also, αβ=ca
⇒ca=10
⇒c=10a
Substituting these values in the equation we get,
ax2+5ax+10a=0
⇒a(x2+5x+10)=0
This is a family of equations for different values of a.
Let's substitute a=1.
⇒x2+5x+10=0
Substituting a=3.
⇒3x2+15x+30=0
Hence, options (a) and (b) are correct.