Slope of PQ=y2−y1x2−x1=k1−(−16α)α2−k2
=k1+16αα2−k2=16+k1αα(α2−k2)
Now we have (α2,k1) passes through
y2=16x
⇒k12=16α2⇒k1=±4α
and (k2,−16α) passes through y2=16x
⇒(−16α)2=256α2=16k2 (or) 16α2=k2
Equation of PQ is y−k1x−α2=
slope⇒y−k1x−α2=16+k1αα(α2−k2)
=16+k1αα(α2−16α2) Since k2=16α2
⇒y−k1x−α2=α(16+k1α)α4−16
On cross multiplication , we get
⇒(y−k1)(α4−16)=α(x−α2)(16+k1α)
⇒yα4−16y−k1α4+16k1=(x−α2)(16α+k1α2)
⇒yα4−16y−k1α4+16k1=16xα+k1xα2−16α3−k1α4 on cancelling same terms on both sides
⇒yα4−16y+16k1=16xα+k1xα2−16α3
⇒y(α4−16)−x(16α+k1α2)+(16k1+16α3)=0 is the required equation
we have k1=4α
⇒y(α4−16)−x(16α+4α3)+(64α+16α3)=0
⇒y(α4−16)−4x(4α+α3)+16(4α+16α3)=0
⇒y(α4−16)+(4α+α3)(16−4x)=0
This equation passes through
y=0,x=4 when y=0,x=4
∴ the fixed point is (4,0)