Given,
y2=16x⇒y2=4(4x)Comparing with general equation of a parabola, y2=4(ax), we get a=4.
Now, putting point P in the equation, k12=16α2⇒k1=±4α
Similarly, putting point Q in the equation,
−16α2=16k2⇒k2=16α2
Now, the EQUATION OF CHORD:
Case-1: k1=4α,
We have, y−4α=(4α+16αα2−16α2)(x−α2)⇒y−4α=4(α+4α)(x−α2)(α−4α)(α+4α)⇒(y−4α)(α−4α)=4(x−α2)⇒αy−4α2−4αy+16=4x−4α2⇒α2y−4y+16α=4αx⇒y(α2−4)+4α(4−x)=0
So, in this case the point is (4,0).
Case-2: k1=−4α,
We have, y+4α=(−4α+16αα2−16α2)(x−α2)⇒y+4α=−4(α−4α)(x−α2)(α−4α)(α+4α)⇒(y+4α)(α+4α)=−4(x−α2)⇒αy+4α2+4αy+16=−4x+4α2⇒α2y+4y+16α=−4αx⇒y(α2+4)+4α(4+x)=0
So, in this case the point is (-4,0) which is not possible as it lies outside the curve.
Hence, the correct answer is (4,0)