The given hyperbola is,
x2−y2=16
General point on the hyperbola is given by (4secθ,4tanθ)
Tangent to the hyperbola at (4secθ,4tanθ) is
(4secθ)x−(4tanθ)y=16⇒xsecθ−ytanθ=4
Any point on the tangent will be given by
(λ,(secθ)λ−4tanθ)
Equation of the chord of contact to the parabola y2=16x is
T=0⇒y×((secθ)λ−4tanθ)=8(x+λ)⇒y×(λ−4cosθ)=8sinθ(x+λ)⇒(y−8sinθ)λ−4ycosθ−8xsinθ=0⇒y=8sinθ,x=−4ycosθ8sinθ=−4cosθ
Let the coordinates of Q be (h,k)
h=−4cosθ,k=8sinθ⇒(h−4)2+(k8)2=1⇒h216+k264=1
Length of the latus rectum will be
L=2a2b=2×168=4