The correct option is D (2,1)
Given, parabola:
x2−4x−8y−4=0
⇒(x−2)2=8y+4+4
⇒(x−2)2=8y+8
⇒(x−2)2=8(y+1)⇒(x−2)2=4×2(y+1)
General equation of parabola,
⇒(x−h)2=4a(y−k)
On comparing, we get
h=2,a=2,k=−1
Cooridnates of focus is (h,k+a)
⇒(2,−1+2)≡(2,1)
Hence, the correct answer is Option b.