The correct option is B 1
Multiplying and dividing the above expression by (1−x)
Therefore
1−x(1−x)(1+x)(1+x2)(1+x4)...(1+x2m)
=1−x(1−x2)(1+x2)(1+x4)...(1+x2m)
=1−x(1−x4)(1+x4)...(1+x2m)
:
:
:
=1−x(1−x2m)(1+x2m)
=1−x(1−x2m+1)
=(1−x)(1−x2m+1)−1
=(1−x)(1+x2m+1+(x2m+1)2...∞) ...(since |x|<1)
=(1+x2m+1+(x2m+1)2...∞−(x+x2m+1+1...∞)
Hence coefficient of x2m+1 is 1.