Coefficient of x3 in the expansion of (1+x1−x)2, |x| < 1 is
(1+x)2(1−x)2 = (1+x)2(1−x)−2
We will expand (1−x)−2 and find the coefficient of x3
(1+x)2(1−x)−2 = (1 + 2x + x2)(1 + 2x + 3x2 + 4x3...........)
[(1+x)n = 1 + nx + n(n−1)2!x2 + n(n−1)(n−3)3!x3..........]
= 1(1 + 2x + 3x2 + 4x3..........) + 2x(1 + 2x + 3x2 + 4x3..........) + x2(1 + 2x + 3x2 + 4x3..........)
Coefficient of x3 = 4 + 6 + 2 = 12