wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Column - 1: Trigonometric expression
Column - 2: Dependency on 'α' and 'β'
Column - 3: Equivalent value of Trigonometric expression in Column - 1.

Column1Column2Column3(I)cos2(α+β)sin2(αβ)cos(2α)cos(2β)+1(i)Independent of α only (P)1(II)cos2α+cos2(α+β)2cos(α)cos(β)cos(α+β)(ii)Independent of β only (Q)sin2β(III)sin(αβ)sin(α+β)1tan2α cot2β(iii)Independent of α and β(R)cos2αsin2β(IV)2sin2β+4cos(α+β)sinαsinβ+cos2(α+β)(S)cos(2α)
Which of the following options is the only correct combination ?

A
(IV)(i)(Q)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(IV)(ii)(S)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(III)(ii)(S)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(III)(i)(Q)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B (IV)(ii)(S)
(A) (I) 1+cos2(α+β)sin2(αβ)cos(2α)cos(2β)=1+cos2α cos 2βcos2α cos 2β=1

(II) cos2α+cos2(α+β)cos(α+β)[cos(α+β)+cos(αβ)]=cos2α[cos2αsin2β]=sin2β

(III) (sin2αsin2β)cos2α sin2βcos2 αsin2 βsin2αcos2β

=(sin2αsin2β)cos2αsin2βsin(α+β)sin(βα)

=cos2αsin2β

(IV) 2sin2β+2cos(α+β)[cos(αβ)cos(α+β)]+2cos2(α+β)1

=2(sin2β)12 cos2(α+β)+2cos2(α+β)+2(cos2αsin2β)

=2cos2α1=cos2α

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon