The correct option is B (II)(Q)
(I)
2x2ydx−2y4dx+2x3dy+3xy3dy=0
Dividing both side by x3y we have
2dxx−2y3x3dx+2dyy+3y2x2dy=02d(lnx)+2d(lny)+d(y3x2)=0⇒2ln|x|+2ln|y|+y3x2=C
Putting (1,1), C=1
So, α+β+γ=5
(II)
dydx=(x+1)2+(y−3)(x+1)dydx+(−11+x)y=x2+2x−2x+1I.F=e∫(−11+x)dx=(11+x)⇒y.(11+x)=∫(x+1)2−3(1+x)2dx+Cy1+x=x+3x+1+C
Putting(2,0), C=−3
⇒y1+x=x+3x+1−3y(3)=3
(III)
Differentiating w.r.t x and taking y as constant
f′(xy)y=exy−y−x(y−1)(eyf(x)+exf(y))+exy−y−x(eyf′(x)+exf(y))
Now, at x=1,y=1⇒f′(1)=e
which gives, f(1)=0
For, x=1, we have
f′(y)y=e−1(y−1)(ef(y))+e−1(eey+ef(y))y→xf′(x)−f(x)=exxexf′(x)−exf(x)e2x=1x⇒ddx(f(x)ex)=1x⇒f(x)=exlnx
∴ln(ln(f(e)))=1
(IV)
2xydy−x3dy=3x2ydx−y2dx⇒2xydy+y2dx=3x2ydx+x3dy⇒∫d(xy2)=∫d(xy3)+C⇒xy2=xy3+CAt x=12, y=14⇒C=0⇒y=x2∴Length of Latus Rectum=1