A) y=x2−2x+4x2+2x+4
⇒(y−1)x2+2x(y+1)+4y−4=0
Since, x is real
⇒D≥0
⇒4(y+1)2−16(y−1)≥0
⇒3y2−10y+3≤0
⇒(3y−1)(y−3)≤0
⇒y∈[13,3]
So, option A i.e. 1 lies in the range.
B) y=x2−3x+22x−3
⇒x2+x(−3−2y)+2+3y=0
Since, x is real
⇒(−3−2y)2−4(2+3y)≥0
⇒4y2+1≥0
⇒y∈R
So, all options lie in the range
y=2x2−2x+4x2−4x+3
⇒x2y−4xy+3y=2x2−2x+4
⇒x2(y−2)+x(−4y+2)+3y−4=0
Since, x is real
D≥0
⇒(−4y+2)2−4(y−2)(3y−4)≥0
⇒y2+6y−7≥0
⇒(y+7)(y−1)≥0
⇒y∈(−∞,−7]∪[1,∞)
All option values except option c values lies in the range
x2−(a−3)x+2<0
⇒(a−3)2−8>0