(1+x)n=nC0+nC1x+.....................+nCnxn
Differentiating,
n(1+x)n−1=nC1+2.nC2x+.......................n.nCnxn
Putting x = 1 we get required sum = n.2n−1
x(1+x)n=nC0x+nC1x2+.....................+nCnxn+1
Differentiating,
n(1+x)n−1x+(1+x)n=nC0+2.nC1x+3.nC2x2+.......................(n+1).nCnxn
Putting x =1. we get required sum:
S=n.2n−1+2n=2n−1(n+2)
(1+x2)n.x=nC0x+nC1x3+.....................+nCnx2n+1
Differentiating,
n(1+x2)n−12x2+(1+x2)n=nC0+3.nC1x2+5.nC2x4+.......................(2n+1).nCnx2n
Putting x =1. we get required sum:
S=n.2n−12+2n=2n(n+1)
Obviously the last answer will be the only option remaining.