WeshallapplyarΔformulawhichisarΔABC=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)].whenΔABChasverticesA(x1,y1),B(x2,y2)&C(x3,y3)A)LettheΔABChaveverticesA(x1,y1)=(2,3),B(x2,y2)=(−1,0)&C(x3,y3)=(2,−4).∴arΔABC=12[2(0+4)+(−1)(−4−3)+2(3−0)]sq.units=10.5sq.units.⟹arΔABC=10.5sq.unitswhichmatcheswith4.B)LettheΔABChaveverticesA(x1,y1)=(−5,−1),B(x2,y2)=(3,−5)&C(x3,y3)=(5,2).∴arΔABC=12[−5(−5−2)+3(2+1)+5(−1+5)]sq.units=32sq.units.⟹arΔABC=32sq.unitswhichmatcheswith3.C)LettheΔABChaveverticesA(x1,y1)=(1,−1),B(x2,y2)=(−4,6)&C(x3,y3)=(−3,−5).∴arΔABC=12[1(6+5)+(−4)(−5+1)+(−3)(−1−6)]sq.units=24sq.units.⟹arΔABC=24sq.unitswhichmatcheswith2.D)LettheΔABChaveverticesA(x1,y1)=(0,0),B(x2,y2)=(8,0)&C(x3,y3)=(0,10).∴arΔABC=12[0(0−0)+8(10−0)+0(0−0)]sq.units=40sq.units.⟹arΔABC=40sq.unitswhichmatcheswith1.Ans−A⟶4B⟶3C⟶2D⟶1