wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Common roots of the equations 2sin2x+sin22x=2 and sin2x+cos2x=tanx, are

A
x=(2n1)π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x=(2n+1)π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x=(2n+1)π3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D None of these
2sin2x+sin22x=2

2sin2x+(2sinxcosx)2=2

2sin2x+4sin2xcos2x=2

2sin2x+4sin2xcos2x2=0

2sin2x+4sin2x(1sin2x)2=0

2sin2x+4sin2x4sin4x2=0

4sin4x+6sin2x2=0

2sin4x3sin2x+1=0

2sin4x2sin2xsin2x+1=0

2sin2x(sin2x1)(sin2x1)=0

(sin2x1)(2sin2x1)=0

sin2x=1 or 2sin2x=1

sin2x=1 or sin2x=12

sinx=±1 or sinx=±12

x=(2n+1)π2 or x=nπ±π4
....(1)

sin2x+cos2x=tanx

2tanx1+tan2x+1tan2x1+tan2x=tanx

2tanx+1tan2x1+tan2x=tanx

2tanx+1tan2x=tanx+tan3x

tanx+tan2x2tanx1+tan3x=0

tan3x+tan2xtanx1=0

tan2x(tanx+1)(tanx+1)=0

(tanx+1)(tan2x1)=0

tanx=1,ortan2x=1

x=nπ±π4 ....(2)

From (1) and (2) Common roots are nπ±π4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon