1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Definition of a Determinant
Common roots ...
Question
Common roots of the equations
2
s
i
n
2
x
+
s
i
n
2
2
x
=
2
and
s
i
n
2
x
+
c
o
s
2
x
=
t
a
n
x
,
are
A
x
=
(
2
n
−
1
)
π
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x
=
(
2
n
+
1
)
π
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x
=
(
2
n
+
1
)
π
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is
D
None of these
2
sin
2
x
+
sin
2
2
x
=
2
⇒
2
sin
2
x
+
(
2
sin
x
cos
x
)
2
=
2
⇒
2
sin
2
x
+
4
sin
2
x
cos
2
x
=
2
⇒
2
sin
2
x
+
4
sin
2
x
cos
2
x
−
2
=
0
⇒
2
sin
2
x
+
4
sin
2
x
(
1
−
sin
2
x
)
−
2
=
0
⇒
2
sin
2
x
+
4
sin
2
x
−
4
sin
4
x
−
2
=
0
⇒
−
4
sin
4
x
+
6
sin
2
x
−
2
=
0
⇒
2
sin
4
x
−
3
sin
2
x
+
1
=
0
⇒
2
sin
4
x
−
2
sin
2
x
−
sin
2
x
+
1
=
0
⇒
2
sin
2
x
(
sin
2
x
−
1
)
−
(
sin
2
x
−
1
)
=
0
⇒
(
sin
2
x
−
1
)
(
2
sin
2
x
−
1
)
=
0
⇒
sin
2
x
=
1
or
2
sin
2
x
=
1
⇒
sin
2
x
=
1
or
sin
2
x
=
1
2
⇒
sin
x
=
±
1
or
sin
x
=
±
1
√
2
⇒
x
=
(
2
n
+
1
)
π
2
or
x
=
n
π
±
π
4
....
(
1
)
sin
2
x
+
cos
2
x
=
tan
x
⇒
2
tan
x
1
+
tan
2
x
+
1
−
tan
2
x
1
+
tan
2
x
=
tan
x
⇒
2
tan
x
+
1
−
tan
2
x
1
+
tan
2
x
=
tan
x
⇒
2
tan
x
+
1
−
tan
2
x
=
tan
x
+
tan
3
x
⇒
tan
x
+
tan
2
x
−
2
tan
x
−
1
+
tan
3
x
=
0
⇒
tan
3
x
+
tan
2
x
−
tan
x
−
1
=
0
⇒
tan
2
x
(
tan
x
+
1
)
−
(
tan
x
+
1
)
=
0
⇒
(
tan
x
+
1
)
(
tan
2
x
−
1
)
=
0
⇒
tan
x
=
1
,
o
r
tan
2
x
=
1
⇒
x
=
n
π
±
π
4
....
(
2
)
From
(
1
)
and
(
2
)
Common roots are
n
π
±
π
4
Suggest Corrections
0
Similar questions
Q.
The general solution(s) of
cos
2
2
x
−
sin
2
x
=
0
can be
Q.
The solution set of the equation
sin
3
x
+
cos
2
x
=
−
2
is
(where
n
∈
Z
)
Q.
L
e
t
f
(
x
)
=
⎧
⎪ ⎪ ⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪ ⎪ ⎪
⎩
(
1
+
|
c
o
s
x
|
)
a
b
|
c
o
s
x
|
,
n
π
<
x
<
(
2
n
+
1
)
π
2
e
a
.
e
b
,
x
=
(
2
n
+
1
)
π
2
e
c
o
t
2
x
c
o
t
8
x
,
(
2
n
+
1
)
π
2
<
x
<
(
n
+
1
)
π
I
f
f
(
x
)
i
s
c
o
n
t
i
n
u
o
u
s
i
n
(
(
n
π
)
,
(
n
+
1
)
π
,
t
h
e
n
)
Q.
The general solution(s) of the equation
cos
θ
+
cos
7
θ
=
0
can be (
n
∈
Z
)
Q.
The function f (x) = |cos x| is
(a) differentiable at x = (2n + 1) π/2, n ∈ Z
(b) continuous but not differentiable at x = (2n + 1) π/2, n ∈ Z
(c) neither differentiable nor continuous at x = n ∈ Z
(d) none of these
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Introduction
MATHEMATICS
Watch in App
Explore more
Definition of a Determinant
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app