wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Common tangents are drawn to the parabola y2=4x and the ellipse 3x2+8y2=48 touching the parabola A and B and the ellipse at C and D. Area of quadrilateral ABCD (in sq.units) is:

A
552
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
50
No worries! Weā€˜ve got your back. Try BYJUā€˜S free classes today!
C
502
No worries! Weā€˜ve got your back. Try BYJUā€˜S free classes today!
D
1002
No worries! Weā€˜ve got your back. Try BYJUā€˜S free classes today!
Open in App
Solution

The correct option is A 552
Let y=mx+1m be tangent to parabola y2=4x it will touch the ellipse
x242+y2(6)2=1
if 1m2=16m2+6
[using c2=a2m2+b2]
(8m21)(2m2+1)=0
16m4+6m21=0
m=±122
We know that a tangent of slope m touches the parabola y2=4ax at (am2,2am).
Coordinates of the points of contact of common tangents to the parabola are
A(8,42) and B(8,42)
We also know that a tangent of slope m touches the ellipse
x2a2+y2b2=1 at
(a2ma2m2+b2,±b2a2m2+b2)
Coordinates of the points of contact of common tangents to the ellipse are
C(2,32) and D(2,32)
Clearly thr quadrilateral ABCD is a tarpezium we have AB=82, CD=62
and the distance between AB and CD is
PQ=8+2=10
Area of quadrilateral ABCD
12(AB+CD)×PQ=552 Sq. units

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Line and Ellipse
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon