(Commultative laws) For any two sets a and B, prove that:
I. A∪B=B∪A [Commutative law for union of sets]
II. A∩B=B∩A [Commutative law for intersection of sets]
I. Let x be an arbitary element of A∪B. Then,
xεA∪B⇒ xϵA or xϵB⇒ xϵB or xϵA⇒ ⇒xϵB∪A.
∴ A∪B⊆B∪A. …(i)
Again, let y be an arbitary elements of B∪A. Then,
yϵB∪A⇒ yϵB or yϵA⇒ yϵA or yϵB∴ B∪A⊆A∪B. …(ii)
From (i) and (ii), we get A∪B=B∪A.
II. Let x be an arbitary element of A∩B. Then,
xϵA∩B⇒ xϵA and xϵB⇒ xϵB and xϵA⇒ xϵB∩A
∴ A∩B⊆B∩A. …(iii)
Again, let y be an arbitray element of B∩A. Then,
yϵB∩A⇒yϵB and yϵA⇒yϵA and yϵB⇒yϵA∩B
∴ B∩A⊂A∩B …(iv)
From (iii) and (iv), we get A∩B=B∩A.